Title: | Power Garima-Generalized Extreme Value Distribution |
---|---|
Description: | Density, distribution function, quantile function, and random generation function based on Kittipong Klinjan,Tipat Sottiwan and Sirinapa Aryuyuen (2024)<DOI:10.28919/cmbn/8833>. |
Authors: | Kittipong Klinjan [cre, aut], Tipat Sottiwan [aut], Sirinapa Aryuyuen [aut] |
Maintainer: | Kittipong Klinjan <[email protected]> |
License: | GPL-3 |
Version: | 0.1.0 |
Built: | 2025-01-12 06:22:00 UTC |
Source: | https://github.com/cran/PGaGEV |
This function calculated the PDF of PGaGEV distribution.
dPGaGEV(x, mu, sigma, xi, a, b, c)
dPGaGEV(x, mu, sigma, xi, a, b, c)
x |
vector of quantiles.There are three cases as follows: 1) if xi>0, x=[(mu-sigma)/xi,Inf].2) if xi=0, x=[-Inf,Inf].3) if xi<0, x=[-Inf,(mu-sigma)/xi]. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
The PDF of PGaGEV distribution based on the research paper in references.
the PDF of PGaGEV distribution.
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
dPGaGEV(1.2,2,1,0.5,0.5,0.5,0.5) #xi=0.5 dPGaGEV(1.2,2,1,0,0.5,0.5,0.5) #xi=0 dPGaGEV(1.2,2,1,-0.5,0.5,0.5,0.5) #xi=-0.5 x=c(1.2,1.3,1.4) dPGaGEV(x,2,1,0.5,0.5,0.5,0.5) #xi=0.5
dPGaGEV(1.2,2,1,0.5,0.5,0.5,0.5) #xi=0.5 dPGaGEV(1.2,2,1,0,0.5,0.5,0.5) #xi=0 dPGaGEV(1.2,2,1,-0.5,0.5,0.5,0.5) #xi=-0.5 x=c(1.2,1.3,1.4) dPGaGEV(x,2,1,0.5,0.5,0.5,0.5) #xi=0.5
This function calculated the CDF of PGaGEV distribution.
pPGaGEV(x, mu, sigma, xi, a, b, c)
pPGaGEV(x, mu, sigma, xi, a, b, c)
x |
vector of quantiles.There are three cases as follows: 1) if xi>0, x=[(mu-sigma)/xi,Inf].2) if xi=0, x=[-Inf,Inf].3) if xi<0, x=[-Inf,(mu-sigma)/xi]. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
The CDF of PGaGEV distribution based on the research paper in references.
the CDF of PGaGEV distribution.
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0.5 pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0 pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=-0.5 x=c(1.2,1.3,1.4) pPGaGEV(x,2,1,0.5,0.5,0.5,0.5) #xi=0.5
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0.5 pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0 pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=-0.5 x=c(1.2,1.3,1.4) pPGaGEV(x,2,1,0.5,0.5,0.5,0.5) #xi=0.5
This function calculated the quantile values of PGaGEV distribution.
qPGaGEV(p, mu, sigma, xi, a, b, c)
qPGaGEV(p, mu, sigma, xi, a, b, c)
p |
vector of probabilities. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
The quantile function of PGaGEV distribution based on the research paper in references.
the quantile values of PGaGEV distribution.
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
qPGaGEV(0.1639605,2,1,0.5,0.5,0.5,0.5) x=c(1.2,1.3,1.4) p <- pPGaGEV(x,2,1,0.5,0.5,0.5,0.5) qPGaGEV(p,2,1,0.5,0.5,0.5,0.5)
qPGaGEV(0.1639605,2,1,0.5,0.5,0.5,0.5) x=c(1.2,1.3,1.4) p <- pPGaGEV(x,2,1,0.5,0.5,0.5,0.5) qPGaGEV(p,2,1,0.5,0.5,0.5,0.5)
This function generatings random numbers of PGaGEV distribution.
rPGaGEV(n, mu, sigma, xi, a, b, c)
rPGaGEV(n, mu, sigma, xi, a, b, c)
n |
number of observations. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
The n random value of PGaGEV distribution based on the research paper in references.
the quantile values of PGaGEV distribution.
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
rPGaGEV(30,2,1,0.5,0.5,0.5,0.5) #xi>0 rPGaGEV(30,2,1,-0.5,0.5,0.5,0.5) #xi<0
rPGaGEV(30,2,1,0.5,0.5,0.5,0.5) #xi>0 rPGaGEV(30,2,1,-0.5,0.5,0.5,0.5) #xi<0